
MA26620: Practical 9

Practical 9: One-way ANOVA

Good afternoon. We saw in the lecture this week about how different estimates of variances behaved
differently if group means were unequal and said that ANOVA (ANalysis Of VAriance) exploits this.
Today, we’ll take this further and see how to use R to practically conduct one-way ANOVA procedures.

1 Recap of the theory

Most of Section 1 of this practical is a recap of what we’ve covered in the lectures. I’d recommend
giving it a careful read and do ask questions on any bits that are hard to follow. Sections 1.4 and 1.5
are new; we haven’t yet met those results in the lectures.

1.1 Expectations and variances of group means

As we covered in the lecture, the one-way ANOVA model deals with situations where observations occur
in groups. We will examine situations where there are k groups, each consisting of m observations,
making n = mk observations in all.

The model used in this situation asserts that each observation in the i-th group has expectation µi.
We further assume that the Yij are uncorrelated with constant variance σ2, that is:

E[Yij ] = µi, Var(Yij) = σ2, Yij uncorrelated, where i = 1, 2, . . . , k; j = 1, 2, . . . ,m.

Recall that dots denote averaging over the respective subscript, so for instance Y3· denotes the
sample mean of the third group. This gives an unbiased estimate of the population mean for the third
group, µ3. Moreover, since each group is a random sample (we studied these extensively in semester
one), the variance of the sample mean for each group is σ2/m. Group means are uncorrelated, due to
our assumption that observations Yij are uncorrelated.

Combining the above observations:

E[Yi·] = µi, Var(Yi·) =
σ2

m
, Cov(Yi·, Yh·) = 0 ∀i ̸= h.

These results allow us to find the variance (and thus ESE) of any linear combination of the group
means, for example:

Var(Y1·− Y2·) = Var(Y1·) + Var(Y2·)− 2Cov(Var(Y1·),Var(Y2·))
=

σ2

m
+

σ2

m
− 2× 0 =

2σ2

m
,

or

Var(Y1·− 2Y2·+ 3Y3·) = Var(Y1·) + 4Var(Y2·) + 9Var(Y3·) =
14σ2

m
.

These expressions are in terms of σ2, so we need a way of estimating this in an unbiased fashion
from the data. To do this, we’ll consider sums of squares.

1.2 Sums of squares

Various quantities can be thought of as corrected sums of squares:

• The (corrected) sum of squares of the first group is
∑m

j=1(Y1j − Y1·)2.
• This can be defined for every other group too.
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• We can define a sum of squares between the Yi·. Since Y·· is the average of the Yi·s, we get∑k
i=1(Yi·− Y··)2.

• The total (corrected) sum of squares that considers all mk observations is:

k∑
i=1

m∑
j=1

(Yij − Y··)2.

• It turns out that these are related by an incredibly useful algebraic identity (which we proved in
the lectures):

k∑
i=1

m∑
j=1

(Yij − Y··)2 = m

k∑
i=1

(Yi·− Y··)2 +
k∑

i=1

m∑
j=1

(Yij − Yi·)2,

i.e. TOTAL SS = BETWEEN GROUPS SS + WITHIN GROUPS SS.

1.3 Expectations of sums of squares

So, “what are the expectations of these sums of squares”, I hear you cry? “Presumably something in
terms of σ2?”

Well, you’re quite right. We saw the gory details in this week’s lecture on where these results come
from, but the actual results were as follows:

E [WITHIN GROUPS SS] = k(m− 1)σ2.

regardless of the values of the µi.
If we make the additional assumption that all µi are equal to a single value µ:

E [BETWEEN GROUPS SS] = (k − 1)σ2,

and so

E
[
BETWEEN GROUPS SS

k − 1

]
= σ2, E

[
WITHIN GROUPS SS

k(m− 1)

]
= σ2.

It follows from the useful algebraic identity above that

E[TOTAL SS] = (km− 1)σ2.

Thus if all the group means are equal, we have three ways of estimating σ2 (since BETWEEN,
WITHIN, and TOTAL SS are all computed from the observations).

If the group means are NOT equal, the within groups sum of squares can still be used, as WITHIN
GROUPS SS divided by k(m − 1) is still an unbiased estimator of σ2. It turns out (we proved this in
yesterday’s lecture) that without the equal group means assumption:

E[BETWEEN GROUPS SS] = m

k∑
i=1

(µi − µ·)2 + (k − 1)σ2.

This gives us some motivation for testing whether the group means are in fact equal by comparing the
quantities

BETWEEN GROUPS SS

k − 1
and

WITHIN GROUPS SS

k(m− 1)
.

In the case of group means all being equal, both should be about the same, but if the
groups have different means, then the former tends to be bigger.
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1.4 Normality

If we make the additional assumption of Normality, the following results hold:

WITHIN GROUPS SS ∼ σ2χ2
k(m−1);

If the µi are all equal, then BETWEEN GROUPS SS ∼ σ2χ2
(k−1).

If the µi are all equal, then TOTAL SS ∼ σ2χ2
(mk−1).

Moreover, if the µi are all equal, then

BETWEEN GROUPS SS

k − 1

/
WITHIN GROUPS SS

k(m− 1)

has an Fk−1,k(m−1) distribution (if you haven’t met the F distribution before, you might like to do a
quick online search and read a bit about it. It has two parameters called the numerator degrees of
freedom and the denominator degrees of freedom, and appears in your stats tables). The ratio will tend
to grow if the means are not equal.

1.5 The Analysis of Variance Table

Phew, what a lot of stuff to remember! Fortunately, the whole procedure can be summarised in a
so-called one-way ANOVA table:

Source SS DF MS F-ratio P-value

Between groups m
k∑

i=1

(Yi·− Y··)2 k − 1 MSGROUPS = SSGROUPS

(k−1) Fobs =
MSGROUPS

MSERROR
P

Within groups
k∑

i=1

m∑
j=1

(Yij − Yi·)2 k(m− 1) MSERROR = SSERROR

k(m−1)

Total (corr)
k∑

i=1

m∑
j=1

(Yij − Y··)2 mk − 1

Here, MS stands for mean square and the p-value labelled P is P (Fk−1,k(m−1) > F -ratio). Note
also that the “Within groups” may also be referred to as “Error” or “Residual”.

To test the hypothesis H0 : µ1 = µ2 = . . . = µk vs H1 : not all group means
are equal, we reject H0 if the F-ratio is greater than the appropriate upper per-
centage point of the F-distribution having (k − 1) and k(m − 1) degrees of freedom,
or equivalently if the p-value is below the significance level.

2 Creating ANOVA tables in R

It probably goes without saying that computing an ANOVA table by hand would be a lengthy, tedious,
and probably error-prone task (and yet one that a statistics student 40 years ago would have had to
undertake). Fortunately R can come to the rescue and calculate all these sums of squares, degrees of
freedom, mean squares, the F-ratio and P-value, pretty much instantly.

Let’s see how.
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2.1 Preliminaries

Download the ratweightgain.csv data from the module webpages and attach it. This data concerns
60 male rats of similar physical size who were fed one of six different diets (A,B,C,D,E,F). Ten rats
were assigned to each diet and their weight gain (in grams) was measured.

Before we jump to an ANOVA table, let’s investigate the data a little. Begin by finding the mean
weight gain for each type of diet: ybar <- tapply(weightgain,diet,mean). This command applies
the R-function mean to the weightgain data, grouped according to the value of diet. Look at ybar
to see the results. Adapt the tapply command to calculate the sample variances (var), standard
deviations (sd) and group sizes (length) for each group.

It’s a good idea to plot the data to get a feel for what’s going on. Something like boxplot(weightgain∼diet)
will give you a quick boxplot (remember ggplot can make much nicer ones and if we were using the plot
for anything more than a quick glance at the data, it’d need a title and well labelled axes).

2.2 The ANOVA model

To fit the one-way ANOVA model E[weightgain] = µi, with a different µi for each diet type, simply
enter the command:

model1<-aov(weightgain∼diet)

and then summary(model1) and try to interpret this.
We see from this table that our estimate of the error variance σ̂2 is 214.6 and this has 54 degrees of

freedom (why 54?). We therefore see that our estimate of the variance of each group mean is 214.6/10
and the corresponding standard error is

√
214.6/10 = 4.6325.

Would you believe that all the mean weight gains for all diets were the same? To do this we’d have
to conduct the usual one-way ANOVA hypothesis test of testing H0 : all means are equal against the
alternative that they are not all equal. R has computed the relevant p-value for you; make sure you’re
confident with how to interpret it.

2.3 Post-ANOVA analysis

The output we’ve obtained so far is all well and good, but it’s a little limited insofar as the conclusions
that we can draw from it. OK, we can conclude whether or not all group means are equal, but if they
aren’t, we’d surely want to say more, such as identifying which means are different from which.

Run the command summary.lm(model1). This shows the results of fitting the model

E[Yij ] = µ1 + (µ2 − µ1)z2 + (µ3 − µ1)z3 + . . .+ (µk − µ1)zk,

where zi = 1 if the observation is in group i and is 0 otherwise. Thus we see from the output that
µ̂A = 100, µ̂B = 100− 14.1 = 85.9 and so on (compare against the group means you found earlier using
the tapply command).

As examples, try to obtain

(i) the estimate of the difference between the means of diet A and diet D, along with its estimated
standard error (ESE).

(ii) the estimate and ESE of λ = (µA + µB + µC)/3− (µD + µE + µF )/3.

2.3.1 Pairwise t-tests

You might also like to run the command pairwise.t.test(weightgain,diet,p.adjust="none"),
which runs a t-test on each pair of diets (so low p-values suggest unequal means). However, tests
applied will all have correlated results and the overall significance level (called the familywise error rate
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(FWER)) can be greatly different from that of individual tests. For example, with 6 groups, there are
15 (=6C2) pairwise comparisons; the overall FWER could be as high as 1− (1− 0.05)15 = 0.54.

Methods exist to adjust the error rate of each test to make the FWER more reasonable. We won’t
go into detail of how they work, but using p.adjust="Bonferroni" is a much more conservative test,
while p.adjust="Holm" is similar to the Bonferroni test but tends to find more significant differences.

2.3.2 Tukey’s Honest Significant Difference Test

This rather wonderfully named test also aims to find which means are significantly different to each
other.

Run the command TukeyHSD(model1).
This test sets the FWER at 95% (by default) and adjusts the individual significance values accord-

ingly, and gives a 95% confidence interval for the differences in the means (the lower and upper ends
of which are labelled lwr and upr). If 0 lies in this interval for a particular pair, then the difference
between these two groups is insignificant.

The interpretation of this output can be quite challenging –it’s best to use a structured approach:

(i) rank order the group averages from highest to lowest.

(ii) compare the largest with the smallest; if significant, compare the largest with the second smallest
etc, continuing until the largest has been compared with the second largest, or a non-signifcant
difference has been found.

(iii) continue comparing the second largest with the smallest, etc, as above, then the third largest etc.

(iv) at each stage, once a non-significant difference is located, conclude that there is no significant
difference between any means enclosed by a non-signifcant pair,

(v) represent the overall conclusions about similarities and differences among the means using a
schematic diagram involving the ordered sample averages, with lines drawn to connect means
that are not significantly different.

R allows us to make a plot that will assist us in these endeavours. Run plot(TukeyHSD(model1),las=1)
(the las=1 here enables all the axis labels to fit on). So following the above procedure the groups in
decreasing order of mean are A, C, B, E, D, F. Then µA − µF and µA − µD are significantly different
from zero, but µA − µE isn’t (since zero lies within the 95% CI) so we’d draw a line joining A,C,B and
E. Then we’d focus our attention on C. µC − µF and µC − µD are significantly different from zero, but
µC −µE isn’t, so we’d draw a line joining C, B, E. And so on... check that you can arrive at a diagram
like the one on page six.
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Make sure you can reproduce this from R’s output. We can then interpret this easily. For instance,
we’d believe that µA = µB , because a line joins them. We wouldn’t believe that µA = µD, nor that
µC = µD since a line doesn’t join them.

3 Exercises

1. An engineer conducts an experiment with the aim of evaluating the maximum force that steel
rods manufactured in different countries can withstand before breaking. She tests five rods from
each of six countries. The following ANOVA table was computed:

Source SS DF MS F-ratio P
Between countries 0.115

10
Total (corr) 340

(a) Copy and complete the table.

(b) State a model underlying the analysis and carry out the usual hypothesis test, stating clearly
and carefully your conclusions.

2. Researchers for the American Trading Standards journal Consumer Reports, June 1986, pp. 366-
367 analysed results of a laboratory analysis of calories and sodium content of major hot dog
brands. The researchers analyzed three types of hot dog: beef, poultry, and meat (mostly pork
and beef, but up to 15% poultry meat). The data are contained in the file hotdogs.csv on the
module webpages under the variable names:

• hotdog: Type of hotdog (beef, meat, or poultry)

• calories: Calorific content per hot dog

• sodium: Sodium content per hot dog

Investigate for any differences in the mean calorific content for each type of hotdog.

3. Due to increased energy shortages and costs, utility companies are stressing ways in which bills
can be cut. One company reached an agreement with the owner of a new apartment block to
conduct a test of energy saving plans. Identical apartments were chosen for the study, similar in
size, amount of shade, direction faced, etc. Four plans were to be tested, and the thermostat was
set at a fixed level in each apartment. Monthly utility bills (£) were recorded.

Treatment A
(no insulation)

Treatment B
(wall and ceiling insulation)

Treatment C
(no insulation,
awnings for windows)

Treatment D
(insulation and awnings)

74.44 68.75 71.34 65.47
89.96 73.47 83.62 72.33
82.00 71.23 79.98 70.87

Analyse the data fully.
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