
MA26620: Practical 10

One-Way ANOVA, Contrasts, Introduction to Two-Way ANOVA

1 One-Way ANOVA: a recap

Recall from the lectures and Practical 9 that a one-way ANOVA table looks like this:

Source SS DF MS F-ratio P-value

Between groups m
k∑

i=1

(Yi·− Y··)2 k − 1 MSGROUPS = SSGROUPS

(k−1) Fobs =
MSGROUPS

MSERROR
P

Within groups
k∑

i=1

m∑
j=1

(Yij − Yi·)2 k(m− 1) MSERROR = SSERROR

k(m−1)

Total (corr)
k∑

i=1

m∑
j=1

(Yij − Y··)2 mk − 1

To test the hypothesis H0 : µ1 = µ2 = . . . = µk vs H1 : not all group means are equal, we reject
H0 if the F-ratio is greater than the appropriate upper percentage point of the F-distribution having
(k − 1) and k(m− 1) degrees of freedom, or equivalently if the p-value is below the significance level.

Load and attach the ratweightgain.csv data from last week into RStudio and remind yourself
what R’s output looks like by running the command summary(aov(weightgain∼diet)). It doesn’t
have the total row, but does have everything else. Make sure you know how to interpret the table,
especially the p-value. Ask for help if you don’t.

2 Contrasts

The one-way ANOVA analyses above are great for concluding whether group means are all equal or
not. However, what if we want to say more? Suppose they’re not all equal. Then can we delve deeper
to get more precise conclusions?

2.1 Definition

This week, we were looking at contrasts, which we defined as a quantity

λ =
k∑

i=1

ciµi,

where
k∑

i=1

ci = c1 + c2 + . . .+ ck = 0. That is, a contrast is a linear combination of group means, with

the extra property that the coefficients sum to zero.
These allow us to examine differences between group means in a more specific way than the usual

one-way ANOVA test, which only allows us to judge whether all of the group means are equal or not.

2.2 Estimating the value of a contrast

Since Yi· (the observed sample mean of the i-th group) is an unbiased estimate of µi (the population

mean of the i-th group), we have that λ̂ =
k∑

i=1

ciYi· is an unbiased estimator of a contrast λ.
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2.3 Sum of squares associated with a contrast

The following quantity is called the sum of squares associated with a contrast, λ:

L(λ̂) =
mλ̂2

k∑
i=1

c2i

.

Recall that m is the number of observations per group. It’s possible to derive (though we’ll skip the
details here) that

L(λ̂)/(SSERROR/(n− k)) ∼ F1,n−k.

2.4 Orthogonal contrasts

The advantage of the contrast method is that we can define the notion of two contrasts to be orthogonal
if they’re uncorrelated (independent). The condition for this is as follows: let

λ1 =

k∑
i=1

c1iµi, λ2 =

k∑
i=1

c2iµi.

Then λ1 and λ2 are orthogonal if and only if
k∑

i=1

c1ic2i = 0.

Tests concerning orthogonal contrasts can be carried out independently of each other.
If we have two orthogonal contrasts between k group means, we can talk of L(λ1) and L(λ2) as

being two associated sums of squares each having 1 degree of freedom. Other comparisons between the
groups will account for the remaining k − 3 degrees of freedom.

If we can find k − 1 mutually orthogonal contrasts, then

L(λ1) + L(λ2) + . . .+ L(λk−1) = BETWEEN GROUPS SS.

3 Example - Rat Weight Gain Data revisited

Let’s begin by making a nice professional-looking ggplot boxplot of the data so we can get a feel for
the groups. This is also good revision for the upcoming assessed practical. Tick the ggplot box in the
packages tab and run:

ggplot(ratweightgain,aes(x=diet,y=weightgain))+geom boxplot()

Remind yourself (from previous practicals/notes) how to add a title and edit axis labels etc. Make
your plot look professional!

You may have already done this at the start of the practical, but if not, make a one-way ANOVA
table by running the command summary(aov(weightgain∼diet)). The small p-value here would lead
us to reject the null hypothesis H0 : µA = µB = µC = µD = µE = µF ; we conclude that not all group
means are equal.

“But couldn’t we have deduced that from the boxplot?”, I hear you cry. What was the point of
running the ANOVA? After all, you only have to look at groups C and D on the boxplot to see that
those groups are different.

In response to those questions: firstly it’s not always so clear whether the population group means
could feasibly be the same or not. Remember that these are fairly small samples. But also those
questions reinforce the importance of contrasts which allow us to ask more specific questions. Does
µB = µC? From the boxplot we’d probably guess not. Does µB = µD? This is trickier to conclude
with any confidence.
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3.1 Contrasts

Suppose we obtain more information about the other diets. We now learn that the six diets were in
fact the combinations of high and low protein forms of three diets based on beef, cereal and pork as
follows:

Diet A B C D E F
Protein Level High High High Low Low Low
Diet Base Beef Cereal Pork Beef Cereal Pork

Let’s add this information into RStudio:

protein<-rep(c("High","Low"),each=30)

dietbase<-rep(c("Beef","Cereal","Pork"),each=10,times=2)

We have now created two data variables whose elements are text strings. In our analyses these
signify the levels of two factors: one has two levels, High and Low; whilst the other has three levels,
Beef, Cereal and Pork. Some routines in R demand that factors are identified as such and we can ensure
that we don’t encounter any pitfalls by writing:

protein<-as.factor(protein)

dietbase<-as.factor(dietbase)

Some natural contrasts that may be of interest arise here immediately; let’s consider the diet base.
For instance, how about beef vs pork (which can be described by the contrast λBvP = µbeef − µpork).
Also animal vs vegetable i.e. 1

2 (µbeef + µpork)− µcereal?
We can estimate these two contrasts (tapply(weightgain,dietbase,mean) will help). Do so, and

calculate their associated sums of squares, remembering that the group size of each different dietbase
is 20, not 10. What do they add up to? Are the contrasts orthogonal?

Run summary(aov(weightgain∼dietbase)) - does the between groups sum of squares look famil-
iar?

3.2 Testing

Let’s test whether the beef vs pork contrast is zero. Hopefully you found that λ̂BvP = 1
2 and L(λ̂BvP) =

5/2. According to the theory we saw at the start of the practical:

L(λ̂BvP)/(SSERROR/(n− k)) ∼ F1,n−k,

so in this case we seek the probability of F1,54 exceeding

2.5

15932/(60− 3)
= 0.0089442.

We can ask R to give us this probability: pf(df1=1,df2=54,0.0089442,lower.tail=FALSE). The p-
value that R spits out is huge so it seems that whether the diet base is beef or pork makes no significant
difference.

What about the animal vs vegetable contrast? Conduct the F-test and conclude whether or not
you’d believe this contrast to be zero.
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4 Two-way ANOVA

As we’ve seen, the rat weight gain data really has two different ways of splitting the observations into
groups: by the diet base, or by protein content. That is, there are two different categorical variables
(diet base, protein) whose influence upon one continuous dependent variable (weight gain) we may wish
to determine. This is the situation that two-way ANOVA deals with. We’ll see much more detail in the
coming lectures, but today we’ll see how to implement two-way ANOVA in R.

The structure of our data could be thought of in the following way:

Diet base
Beef Cereal Pork

Protein
Level

High 10 observations 10 observations 10 observations
Low 10 observations 10 observations 10 observations

We call diet base the columns factor, which has c = 3 levels (beef, cereal and pork) and we call
protein level the rows factor, which has r = 2 levels (high and low). Each group hasm = 10 observations.
Overall there are r × c ×m = 60 observations. We denote the k-th observation in row i, column j by
Yijk.

The two-way ANOVA model is as follows:

Yijk = µ+ αi + βj + γij + εijk, i = 1, . . . , r; j = 1, . . . , c; k = 1, . . . ,m.

Let’s break that down:

• µ is an overall grand mean, the mean of all rcm observations.

• αi denotes the mean effect of being in the i-th row.

• βj denotes the mean effect of being in the j-th column.

• γij denotes the interaction effect. More on this below.

• εijk are random independent errors with expected value 0 and variance σ2.

So what are these “interaction” terms? Well, interaction effects represent the combined effects of
factors on the dependent variable. When an interaction effect is present, the impact of one factor
depends on the level of the other factor. Part of the power of ANOVA is the ability to estimate and
test interaction effects. In our example, it could be the case that the effect of having high protein has a
different effect on the rats’ weight gains depending on which diet base is present – a two-way ANOVA
will allow us to analyse this.

It turns out that (we’ll see why in the lectures), much like in the one-way case, the TOTAL SS
can be decomposed into the sum of sums of squares which correspond to row effects, column effects
and interaction effects (plus a residual sum of squares). R can fit these models easily. Simply run
summary(aov(weightgain∼protein*dietbase)) to fit the two-way ANOVA model.

In general, a two-way ANOVA table looks like this:

Source SS DF MS F-ratio
Row factor Row SS r − 1 Row SS/(r − 1) MSROW /MSERROR

Column factor Col SS c− 1 Col SS/(c− 1) MSCOL/MSERROR

Interaction
Row:Column

R:C SS (r − 1)(c− 1) R:C SS/((r − 1)(c− 1)) MSR:C/MSERROR

Error Error SS rc(m− 1) Error SS/(rc(n− 1))
Total (corr) Total SS mcr − 1
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We’ll cover how to calculate the various sums of squares in the coming lectures. However, much
like in the one-way case, MSERROR is an unbiased estimator of σ2 regardless of whether or not the
αi, βi and γij are zero. The other mean-squares (see MS column) have expected value σ2 only if the
corresponding factors are 0 and grow if not. Consequently the three given F ratios can respectively be
used to test whether all row effects are zero (i.e. αi = 0∀i), all column effects are zero (i.e. βj = 0∀j
or all interaction effects are zero (γij = 0∀i, j). R gives us a p-value although note that it doesn’t give
us the ‘Total’ line of the table above. For our rat weight gain data, we see that dietbase has a large
p-value; we would not reject the hypothesis that all the diet bases are equal. It seems therefore that
the level of diet base (i.e. pork, beef, or cereal) does not have a significant effect on the rats’ weight
gains. What would you conclude about protein? How about the interactions? Are they significant?

One final tool for us to meet today is the interaction plot. Again, we’ll discuss these more in the lec-
tures. With this data, we seem to have borderline significant interactions (since the p-value is not too far
from 5%). We can make an interaction plot by running interaction.plot(protein,dietbase,weightgain).
This simply plots the cell means for each cell in table on page 3.

We would interpret this plot as follows: we see that the lines for beef and pork are very nearly
parallel; this suggests that moving from high to low protein affects the weight gain in a similar way for
both diet bases (reducing from around 100g to around 80g in both cases). The cereal line is not parallel
to the other two however. This suggests that the reduction in weight gained for the two levels of protein
(High/Low) depends upon the level of diet base (beef/pork/cereal), with cereal behaving differently
from the meat-based diets.

5 Exercises

1. (See data in pollution.csv) Nitrogen dioxide is a known pollutant, but its effects are not well
known. A study was carried out of protein leakage in the lungs of mice exposed to nitrogen
dioxide for A=10, B=12, and C=14 days. Half the mice were exposed to the nitrogen dioxide;
the other half were not, and served as a control group. The response variable is the percent of
serum fluorescence, with high values indicating more protein leakage. One third of the animals in
the exposed and control groups had their serum fluorescence measured at 10, 12 and 14 days.

Analyse the data.

2. (See data in seniors.csv) As part of a long term study of senior citizens, sociologists an physicians
studied the relationship between geographical location and health status with regard to depression.
The worksheet contains depression test scores on 120 individuals, of which

• 60 were in good general health whilst 60 suffered from an existing medical condition;

• 40 resided in Scotland, 40 in England and 40 in Wales.

Analyse the data by using a two-way ANOVA model and report on your conclusions.
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